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Abstract

This paper is concerned with the plastic buckling of rectangular plates subjected to both intermediate and end
uniaxial loads. The plate has two opposite simply supported edges that are parallel to the load direction while the other
remaining edges may take any combination of free, simply supported or clamped conditions. Both the incremental
theory of plasticity and the deformation theory of plasticity are considered in bounding the plastic behaviour of the
plate. The buckling problem is solved by decomposing the plate into two sub-plates at the boundary where the
intermediate load acts. Each sub-plate buckling problem is solved exactly using the Levy approach and the two
solutions brought together by the continuity equations at the separated interface. There are eight possible solutions for
each sub-plate and consequently there are 64 combinations of solutions to be considered for the entire plate. The final
solution combination depends on the nature of the ratio of the intermediate load to the end load, the intermediate load
location, aspect ratio, and material properties. Typical plastic stability criteria are presented in graphical forms which
should be useful for engineers designing plated walls that support intermediate floors/loads.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The elastic buckling problem of rectangular plates under uniaxial loads acting at opposite ends is the
most basic plate buckling problem and its solution is documented in most standard texts on plate buckling
(for example Timoshenko and Gere, 1961; Bulson, 1970). Recently, Wang et al. (2004) extended this
buckling problem to include an intermediate uniaxial load in addition to the end uniaxial loads as shown in
Fig. 1. This problem has practical applications in vertical plate structures/walls that are required to carry an
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Fig. 1. Rectangular plate under intermediate and end uniaxial loads.

intermediate floor. Wang et al. (2004) solved this problem by decomposing the plate into two sub-plates at
the boundary where the intermediate load acts. Each sub-plate buckling problem is solved exactly using the
Levy approach and the two solutions brought together by the continuity equations at the interfacial edge.
This elastic plate buckling problem has five possible solutions for each sub-plate and consequently there are
25 solution combinations to be considered. The final solution combination depends on the aspect ratio and
the intermediate to end load ratios.

This paper continues in this line of investigation by considering the plastic buckling behavior of the
plate. In order to bound the plastic behaviour, we shall use two competing theories of plasticity, namely, the
incremental theory of plasticity (IT) and the deformation theory of plasticity (DT). IT was proposed by
Prager (1938, 1941, 1942a,b), Handelman and Prager (1948) and Sewell (1963) while DT was advanced by
Hencky (1925), Nadai (1944), Ilyushin (1946), Shanley (1946), Stowell (1948) and Bijlaard (1949). The two
theories may yield somewhat different buckling load values with DT predicting smaller buckling loads than
those obtained by IT. It is interesting to note that despite the physical shortcoming of DT, the buckling
loads predicted have been found to be in better agreement with test results than that furnished by the more
physically realistic IT (Pride and Heimerl, 1949; Hutchinson, 1974; El-Ghazaly and Sherbourne, 1986;
Durban, 1998). This unexpected buckling behaviour could be due to geometrical and other irregularities
not considered in the theoretical treatment (Chakrabarty, 2002).

The rectangular plate considered herein has two opposite edges simply supported and parallel to the
direction of the applied uniaxial loads while the other two plate edges can take any combination of free,
simply supported or clamped conditions. The uniaxial loads act at the ends of the plate as well as at an
intermediate location in the plate domain. The aim of this paper is to derive analytical plastic buckling
solutions for such loaded plates. These analytical solutions elucidate the intrinsic, fundamental and
unexpected features of the solutions. Moreover the exact buckling solutions serve as useful benchmark
values for researchers developing numerical methods for plastic buckling analysis of plates and shells. First,
however, a brief review of the recent literature (from 1995 onwards) in this field is given.



C.M. Wang et al. | International Journal of Solids and Structures 41 (2004) 42794297 4281

Durban and Zuckerman (1999) carried out a detailed parametric study on the elasto-plastic buckling of
rectangular plates under biaxial compression. Apart from confirming that DT furnishes lower buckling
stresses than those computed using IT, they reported the existence of an optimal loading part for DT
model. Betten and Shin (2000) investigated the influences of aspect ratios, load ratios and hardening factors
on the buckling stresses of rectangular plates subjected to biaxial loads. Moen et al. (1998) studied the effect
of plastic anisotropy on the elasto-plastic buckling behaviour of anisotropic aluminum plate elements. Soh
et al. (2000) studied the plastic buckling of a simply supported, rectangular, composite plate subjected to
edge compression. The fibre composite plates considered include carbon epoxy, glass epoxy and boron
aluminum plates. Their theoretical results obtained are deemed comparable to experimental test results.
Chakrabarty (2002) demonstrated the influence of plastic anisotropy on the buckling stress for the plastic
buckling of rectangular plates under unidirectional compression. The buckling stress is shown to be sig-
nificantly lowered by the presence of plastic anisotropy when compared to the corresponding isotropic
material.

The subject on plastic buckling of thick plates was relatively less studied by researchers. One of the early
papers on plastic buckling of thick plates is by Shrivastava (1979, 1995). He derived closed form expressions
for the buckling loads of (a) infinitely long simply supported plates, (b) simply supported square plates and
(c) infinitely long plates that are simply supported on three sides and free on one unloaded edge. Wang et al.
(2001) derived analytically the elastic/plastic stability criteria for (a) uniaxially and equibiaxially loaded
rectangular plates with two opposite edges simply supported while the other two edges may take on any
combination of free, simply supported or clamped boundary condition and (b) uniformly inplane loaded
circular plates with either simply supported edge or clamped edge. Wang (2004) treated the plastic buckling
of uniformly inplane loaded, simply supported, polygonal, thick plates and gave an analytical relationship
between the plastic buckling load and its corresponding elastic thin plate buckling load.

2. Mathematical modeling
2.1. Problem definition

Consider an isotropic, rectangular thin plate as shown in Fig. 1a. The plate has length a, width b, and
thickness / and is simply supported along the edges y = 0 and y = b. The other two edges of the plate may
take any combination of free (F), simply supported (S) and clamped (C) conditions. For convenience, a
four-letter symbol is used to denote the support conditions of the plate. For example, an FSCS plate has a
free left edge, a simply supported bottom edge, a clamped right edge and a simply supported top edge.

The plate is subjected to an end load N; = g1/ (per unit length) at the edge x = 0 and an intermedi-
ate load N, = a4 (per unit length) at the location x = na. Thus the end reaction force at the right edge
x =ais Ny + N, = (61 + 02)h as shown in Fig. 1. A positive value of ¢ implies a compressive load while a
negative value implies a tensile uniaxial load. The material of the plate is assumed to obey the Ramberg—
Osgood constitutive law. The problem at hand is to determine the plastic buckling load for such a loaded
plate.

2.2. Method of solution

The plate is first divided into two sub-plates. The first sub-plate is to the left of the vertical line defined by
x = na (see Fig. 1b) and the second sub-plate is to the right of this line (see Fig. 1c). Adopting the x—y
coordinate systems as shown in Fig. 1b and c, the governing plastic buckling equation for each sub-plate
may be canonically written as (see Chakrabarty, 2000)
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in which w is the transverse displacement at the midplane of the plate, o the inplane stress of the sub-plate,
and the parameters o, f5, y, u are defined as follows:

e Based on incremental theory of plasticity (IT):

:%[14-3%} ﬁ:%{2—2(1—2v)%}+1_1“), (2a,b)
y:%, p=(5—4) (-2 . (2¢,d)

o Based on deformation theory of plasticity (DT):
:Hl%ﬂ’ B = ;[2 2(1—2V)T:| 1Jlrv (3a,b)
y:%, p3§+(1—2v){2—(1—2v)ﬂ, (3¢,d)

where v is the Poisson ratio, and the ratios of the elastic modulus E to the tangential modulus 7 and the
secant modulus S at the onset of buckling are expressed as

E o c—1
?:1+Ck(6—0) y C>17 (43)

E o\
2 i 1 4
5 +k<00) , c>1, (4b)

where g, is a nominal yield stress, ¢ the hardening index that describes the shape of the stress—strain
relationship with ¢ = oo for elastic-perfectly plastic response, and & the horizontal distance between the
knee of ¢ = co and the intersection of the ¢ curve with the 6/gy = 1 line as shown in Fig. 2.

Let
w; _ X i
5 pREEE S (5a—)

where i = 1,2 respectively denotes the sub-plates 1 and 2; a; = na and a; = (1 — n)a. In view of Eq. (5a)-
(5¢), Eq. (1) may be rewritten as
o 64171/[ Zﬁ,az a4W, 4 Cl?'y 64171/,- o 120,‘61? 62171/,- (6)
Toxt T2 vy bt ot ER? O

Based on the Levy approach (Timoshenko and Woinowsky-Krieger, 1959), the solution to the partial
differential equation may take the form of

ﬁ/i()_ci?.)_)i) = Aim()_ci) Sinmﬂ:.)_/i? = 1’27 (7)

where m (= 1,2,...,00) is the number of the half waves of the buckling mode in the y-direction. In view of
Eq. (7), the partial differential equation (6) may be reduced into an ordinary differential equation given by
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Fig. 2. Ramberg-Osgood stress—strain relation.
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Three parameters Aj, A,, and Az are defined as follows:
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Depending on the values of A;, A, and As, there are eight possible solutions for the fourth-order differential
equation (8). These solutions, designated as Solutions A-H, are given in Table 1.

Table 1
Types of solutions depending on values of Ay, A, A;
A] Az A3 Solution
>0 >0 >0 A
<0 B
=0 >0 C
<0 D
<0 Any value E
A2
=0 = T‘ >0 F
<0 G
<0 Any value Any value H
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Solution A:
) ) : . As + /A
Aim = Ci co8 ¢;%; + Cpsin ¢,x; + Ccos X + Cysin &X;  in which ¢, = %,
A — VA
b=y 25 (12)
Solution B:

—A A
Ajm = Cy cosh ¢;x; + Cp sinh ¢.x; + Ci cosh &x; + Ciy sinh £x;  in which ¢, = | /%\/—1,
[—As— VA
&= %‘/ﬁl (13)

Solution C:
Aim = Ciicos p.X; + Cosin ¢,x; + CiX; + Cy  in which ¢, = /A;. (14)
Solution D:
Aim = Cy cosh ¢;x; + Cp sinh ¢ x; + Ci3X; + Cia  in which ¢, = \/—As. (15)
Solution E:
. . . ) —As +/A
Aim = Ciycosh ¢;x; + Cp sinh ¢px; + Cz cos EX; + Cysin &X;  in which ¢, = %,
As ++A
¢ = \/%. (16)
Solution F:
_ _ _ ., . . Az
Aim = Ciy cos ¢x; + CpX; cos ¢,x; + Cpz sin ¢, X; + CyyX; sin ¢, X; in which ¢, = > (17)
Solution G:
—A
Ay = Cyy cosh ¢ X; + CipX; cosh ¢,x; + Ci3 sinh ¢ X; + CuX; sinh ¢,x; in which ¢, = 73 (18)
Solution H:

Ay = Cjp cosh ¢,x; cos EX; + Cpp cosh ¢,x; sin EX; + Cj3 sinh ¢,x; cos £X; + Ciy sinh ¢.; sin £X;

o 1 1/
1nwh1chq5,.:§\/—A3+\/A§—A1, &=3 As + /A5 — A (19)

Note that the solutions of Eq. (8) that are given explicitly in Egs. (12)—(19) involve real values only, i.e. ¢,
and ¢, are real values. We may employ the state-space technique to obtain the solutions for Eq. (8) as
illustrated by Xiang et al. (2003). The solutions of Eq. (8) can also be expressed in a more compact form as
shown by Ore and Durban (1992) if the complex roots of the characteristic equation of Eq. (8) are used in
the solutions. One of the main reasons that prompted the authors to choose the current form of solutions
for Eq. (8) is to reveal the buckling modes of the plates in an explicit form which is readily comprehended.
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The eight real constants Cy;, Cy;, i = 1,2, 3,4 resulting from the solution combination can be evaluated
using the boundary equations at the edges x; =0 and x, = 1.

e For simply supported edges:
171/,- - 0 = Aim - O (203)
and

o OPw; Py — p Py a d*4,, (B — pmPn?

2o S =0= 2 a2 & Am=0, i=1,2, (20b)
where u=1/(1 +v).
e For clamped edges:
Wi=0= A, =0 (21a)
and
2;?:0#%7:0, =1, (21b)

e For free edges:

o; 04w B — p O*wy a d*4;, (B — pmPn?

27 o i = (222)
and
o a3wi ﬂi + u 6317v1~ 12Gib 6171/, o o d3Aim 120',‘17 ('81 + ,u)m27'£2 dA,'m —0
a? a)_C? a,-bz a)?,aj/lz Eh2al’ 6)?, o a? 6)_613 Ehza[ a,-b2 df,— o
i=1,2 (22b)

and the continuity equations at the separation interface are

wi| =W =02 Al — Aol =0, (23a)
X|1= Xp=

1 ow 1 ow, 1 d4,, 1 d4s,

_ - = =0=— - — :0, 23b

a 6)?] 5=l a 6)_62 220 a d)_C] ¥ =1 a d)_Cz %=0 ( )

=0
$2=0

B &’ Ay, _ m*m (B, — H)A
a3 dx3 b? o

ﬂ azv_vl + ﬁl — U azv_vl _ % 62W2 + BZ — U 62W2
al ox: b 0y - a3 0x3 b 03

- ﬂ d2A1m _ m2n2(ﬁl - :u)A
e » i

=0, (23¢)

X1= X=0
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By substituting the appropriate solutions expressed in Egs. (12)—(19) into Egs. (20) to (23), one obtains a set
of homogeneous equations which may be expressed in the following matrix form:

[K{C} = {0} (24)

in which {C} = {Cy; Cj» Ci5 C14 Cy1 Cyp Cy3 C24}T. For a nontrivial buckling solution, the determinant of
[K] must vanish. The characteristic equation furnishes the stability criterion. The valid solution combi-
nations should satisfy the following requirements:

The buckling load satisfies the limits of validity for the solution combinations which it belongs to.
The buckling load is the lowest value among possible solutions and it was found that m = 1 gives the
lowest load for all possible m values for the considered cases.

The stability curves are continuous.

3. Results and discussion

In order to examine the plastic buckling criteria of rectangular plates, we have adopted the following
material properties: £ = 10700 ksi, oy = 61.4 ksi, v = 0.32 and the Ramberg-Osgood parameters ¢ = 20
and k£ = 0.3485. The influences of material properties including E/g, and ¢ will also be investigated. The
buckling factors for the end and intermediate loads are expressed as A, = ohb?/(n*D) and A, =
a,hb? | (7?D), respectively where D = Eh®/[12(1 — v*)] denotes the flexural rigidity of the plate.

Table 2 presents the plastic buckling stress for a simply supported, square plate under a uniaxial
compressive end load. The results are compared with those obtained by Wang et al. (2001). It is observed
that both results are in close agreement. Note that the results from Wang et al. (2001) are based on the
Mindlin shear deformable plate theory. As expected, the results from Wang et al. (2001) are slightly smaller
than the present results which are based on the classical thin plate theory.

Table 2
Plastic buckling stresses o for a simply supported, square plate under uniaxial end load (i.e. no intermediate load)
b/h Buckling stresses o (in ksi)
1T DT
Present study Wang et al. (2001) Present study Wang et al. (2001)
22 71.61 70.84 61.90 60.08
24 61.15 60.71 58.54 57.40
26 54.88 54.60 54.39 53.81

28 49.41 49.11 49.32 48.96
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Fig. 3. Typical stability criterion curve for CSCS square plate with /b = 0.04 by DT. The intermediate load is placed at n = 0.5.

Fig. 3 presents a typical stability criterion curve for plates subjected to intermediate and end loads. The
negative values of A;, i = 1,2 denote tensile inplane loads. The plate will not buckle for any combination of
A and A, values which fall below the stability criterion curve.

The stability criterion curve consists of various regimes. For example, considering the case of a CSCS
square plate with a thickness to width ratio 4/b = 0.04 and subjected to an intermediate load located at
n = 0.5, there are five regimes I, II, III, IV and V which are defined by solution combinations B+ A, H+ A,
A+ A, A+H and A + B, respectively (see Fig. 3). The critical points P, Q, R and S that connect the regimes
are defined by the solution combinations G+ A, F+A, A+F and A + G, respectively. Point P represents
the loading case in which the inplane load is applied to sub-plate 2 only (i.e. Ny = 0) whereas point S
represents the loading case where only sub-plate 1 is loaded (i.e. Ny + N, = 0). However, for different
material properties, aspect ratios, intermediate load positions, and boundary conditions the solution
combinations may change somewhat.

3.1. Buckling factors with various aspect ratios a/b

Figs. 4-6 show the stability criterion curves of SSSS, CSCS and FSFS rectangular plates with aspect
ratios a/b = 1.0, 2.0 and 3.0, the intermediate loading position # = 0.5, thickness to width ratio #/b = 0.04
and various end load to intermediate load ratios. Figs. 4a, 5a and 6a show the buckling results using IT
while Figs. 4b, 5b and 6b present results using DT. The two plasticity theories furnish somewhat similar
results except for the case of CSCS square plates.

Referring to Figs. 4 and 5, we can see that for SSSS and CSCS plates, the buckling factors decrease with
the increasing aspect ratios a/b. However, for FSFS plates, the buckling factors with a/b = 1.0 could be
smaller than that of a/b = 2.0 and a/b = 3.0 as shown in Fig. 6. For SSSS and CSCS plates, the differences
between the buckling factors for a/b = 2.0 and a/b = 3.0 are however much smaller than the differences
between those for a/b = 1.0 and a/b = 2.0.

For negative values of the intermediate load factor A, (i.e. A, is tensile in nature), the end buckling
factor A, takes on almost a constant value. This is because sub-plate 2 does not buckle as it is under a very
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Fig. 4. Stability criteria for SSSS rectangular plates with /b = 0.04 and different aspect ratios a/b = 1,2,3 by (a) IT and (b) DT.
The intermediate load is placed at n = 0.5.

low compressive stress state or in a tensile stress state. So the buckling deformation of the plate mainly
occurs in sub-plate 1. In order to reinforce this point, consider a rectangular plate with two opposite edges
simply supported, subject to an end load and an intermediate load located at # = 0.5, as shown in Fig. 7a.
Suppose we let sub-plate 2 be subjected to a large tensile stress state, say 4, = —50. Depending on different
boundary conditions of the other two edges, the buckling factors A, are given in Table 3. We now compare
the buckling stresses of rectangular plates whose aspect ratio a/b = 0.5 and having the same boundary
conditions as sub-plate 1 along three edges, as shown in Fig. 7b, but the X edge may be clamped, simply-
supported or free edge. The corresponding buckling factors are given in Table 3 for comparison. Based on
the results presented in Table 3 for SSSS, CSCS and FSFS plates, we can conclude that when sub-plate 2 is
under a large tensile stress state, the interface edge may be regarded as approaching the condition of a
clamped edge, except for the FSFS plate with a/b = 2.0, where the interface edge imposes a constraint to
the plate similar to the one from a simply-supported edge.
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Fig. 5. Stability criteria for CSCS rectangular plates with #/b = 0.04 and different aspect ratios a/b = 1,2,3 by (a) IT and (b) DT.
The intermediate load is placed at n = 0.5.

3.2. Buckling factors with various loading positions n

Based on IT and DT, Fig. 8a and b shows the variations of the buckling factors A, of SSSS rectangular
plates with respect to loading positions n when A, = 0,2, a/b = 1,2, and thickness to width ratio /b = 0.04
respectively. It can be seen that the buckling factor A, increases with the increasing value of #, albeit
gradually for # < 0.7 and more steeply for n = 0.7. It can be seen that the two theories of plasticity furnish
significantly different buckling values when 5 > 0.7, especially for results based on IT. Generally, buckling
factors associated with IT are higher than their DT counterparts. It is worth noting that the buckling factors
A, for Ay = 0 differ from their counterparts associated with A, = 2 by an approximate factor of 2.
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Fig. 6. Stability criteria for FSFS rectangular plates with /b = 0.04 and different aspect ratios a/b = 1,2,3 by (a) IT and (b) DT.
The intermediate load is placed at n = 0.5.

3.3. Buckling factors with various boundary conditions

The influences of boundary conditions (such as SSSS, CSCS, FSFS, CSSS, FSSS and CSFS) on the
buckling factors are highlighted in Fig. 9. In computing these buckling factors, we have used the following
parameters: aspect ratio a/b = 2.0, thickness to width ratio #/b = 0.04 and intermediate load position
n = 0.5. It can be seen from Fig. 9 that the buckling criterion curves merge at some portions even though
the rectangular plates have one of its edge conditions different from the other provided the sub-plate with
this edge is under a high tensile stress state. For example, a CSFS plate with a high tensile stress state in sub-
plate 2 will behave in a similar manner to a CSCS plate with a high tensile stress state or a low compressive
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Table 3
Comparison of buckling factors of full plates with uniaxial intermediate and end loads and their corresponding end loaded sub-plates
with different interfacial edge conditions

1T DT IT DT IT DT
Buckling factor A; for SSSS with a/b=1.0 a/b=2.0 a/b=3.0
Az = =30 4.470 4.002 3.799 3712 3.738 3.674
Buckling factors for SSXS sub-plate a/b=0.5 a/b=1.0 a/b=1.5
X edge is clamped 4.543 4.015 3.806 3.717 3.742 3.679
X edge is simply-supported 3.893 3.797 3.678 3.605 3.631 3.609
X edge is free 1.990 1.990 2.311 2.311 2.253 2.253
Buckling factor A; for CSCS with a/b=1.0 a/b=2.0 a/b=3.0
Az = =30 6.214 4198 4.108 3.878 3.917 3.802
Buckling factors for CSXS sub-plate a/b=0.5 a/b=1.0 a/b=15
X edge is clamped 6.367 4.205 4.123 3.884 3.924 3.806
X edge is simply-supported 4.543 4.015 3.806 3.717 3.742 3.679
X edge is free 2.568 2.568 2.333 2.333 2.270 2.270
Buckling factor A; for FSFS with a/b=1.0 a/b=2.0 a/b=3.0
A =—30 2.451 2451 2.289 2.289 2.266 2.266
Buckling factors for FSXS sub-plate a/b=0.5 a/b=1.0 a/b=1.5
X edge is clamped 2.568 2.568 2.333 2.333 2.270 2.270
X edge is simply-supported 1.990 1.990 2.311 2.311 2.253 2.253

X edge is free 1.539 1.539 1.990 1.990 2.210 2.210
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Fig. 8. Variation of buckling factors A, with respect to 5 for rectangular plates with 4 = 0 and 2 by (a) IT and (b) DT.

stress state in sub-plate 2 because the tensile stressed sub-plate does not buckle at all and thus its edge
condition plays no part in the buckling phenomenon.

3.4. Buckling factors with various material properties

The buckling factors of SSSS square plates with various material properties £/ = 200, 400, 800 and
¢=2, 3, 20 are given in Figs. 10 and 11 by using IT and DT, respectively. A thickness to width ratio
h/b = 0.04, and loading position # = 0.5 were used in the calculations. It can be seen from Figs. 10 and 11
that the buckling factors decrease with increasing values of hardening index ¢, i.e. as the plate material
approaches the perfectly elastic—plastic constitutive relation. Furthermore, the shape of the stability cri-



C.M. Wang et al. | International Journal of Solids and Structures 41 (2004) 42794297 4293

CSCS, CSFS, CSSS |

SSSS

FSFS, FSSS

[lo]

T

Results based on IT

(b)
CSCS, CSFS, CSSS

Y
SSSS
CSFS
4

CSSS, FSSS

]

FSFS, FSSS

-b

Results based on DT

FSFS, CSFS

N

Fig. 9. Stability criteria for rectangular plates with #/b = 0.04, aspect ratio a/b = 2, intermediate load position # = 0.5 and different
boundary conditions by (a) IT and (b) DT.

terion curve for large ¢ values approach a bilinear curve with a horizontal portion when A, is negative and a
linear curve when A, is positive. The slope of the linear portion is given by A}/ A5 where Aj is A; value when
A, = 0 (i.e. the case when the plate is subjected to only end load) and A3 is A, value when A, = 0 (i.e. the
case when the plate is subjected to only intermediate load).

3.5. Buckling factors from two theories

The buckling factors of SSSS square plates with various material properties £/ay = 200, 400, 800 and
under an intermediate load only are given in Fig. 12 by using IT and DT, respectively. From Fig. 12, we
observe that the difference between IT and DT increases with increasing E/ag, values. For the same value of
E /oy, the differences also increases with increasing values of parameter c.
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Fig. 12. Buckling load factors A, for SSSS square plates with 4, = 0.

4. Conclusions

This paper presents an analytical method for determining the exact plastic buckling factors of rectan-
gular plates subjected to end and intermediate uniaxial loads, and where two opposite edges (parallel to the
loads) of the plates are simply supported. In this method, the rectangular plate is divided into two sub-
plates at the intermediate load location. Each sub-plate buckling problem is then solved using the Levy
approach. There are eight feasible solutions for each sub-plate. The critical buckling load is determined
from one of the 64 possible solution combinations for the two sub-plates. The solution combination de-
pends on the aspect ratio, the intermediate load position, the intermediate to end load ratio, the material
properties and the boundary conditions. The effects of the aforementioned parameters and the adoption of
DT and IT on the buckling factors are also investigated.

The presented exact buckling solutions do not only elucidate the intrinsic and fundamental character-
istics of the buckling solutions but they should be useful to researchers as benchmark values for checking
the convergence, validity and accuracy of numerical methods for plate buckling analysis.
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