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Abstract

This paper is concerned with the plastic buckling of rectangular plates subjected to both intermediate and end

uniaxial loads. The plate has two opposite simply supported edges that are parallel to the load direction while the other

remaining edges may take any combination of free, simply supported or clamped conditions. Both the incremental

theory of plasticity and the deformation theory of plasticity are considered in bounding the plastic behaviour of the

plate. The buckling problem is solved by decomposing the plate into two sub-plates at the boundary where the

intermediate load acts. Each sub-plate buckling problem is solved exactly using the Levy approach and the two

solutions brought together by the continuity equations at the separated interface. There are eight possible solutions for

each sub-plate and consequently there are 64 combinations of solutions to be considered for the entire plate. The final

solution combination depends on the nature of the ratio of the intermediate load to the end load, the intermediate load

location, aspect ratio, and material properties. Typical plastic stability criteria are presented in graphical forms which

should be useful for engineers designing plated walls that support intermediate floors/loads.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The elastic buckling problem of rectangular plates under uniaxial loads acting at opposite ends is the

most basic plate buckling problem and its solution is documented in most standard texts on plate buckling

(for example Timoshenko and Gere, 1961; Bulson, 1970). Recently, Wang et al. (2004) extended this
buckling problem to include an intermediate uniaxial load in addition to the end uniaxial loads as shown in

Fig. 1. This problem has practical applications in vertical plate structures/walls that are required to carry an
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Fig. 1. Rectangular plate under intermediate and end uniaxial loads.
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intermediate floor. Wang et al. (2004) solved this problem by decomposing the plate into two sub-plates at

the boundary where the intermediate load acts. Each sub-plate buckling problem is solved exactly using the

Levy approach and the two solutions brought together by the continuity equations at the interfacial edge.

This elastic plate buckling problem has five possible solutions for each sub-plate and consequently there are

25 solution combinations to be considered. The final solution combination depends on the aspect ratio and

the intermediate to end load ratios.

This paper continues in this line of investigation by considering the plastic buckling behavior of the

plate. In order to bound the plastic behaviour, we shall use two competing theories of plasticity, namely, the
incremental theory of plasticity (IT) and the deformation theory of plasticity (DT). IT was proposed by

Prager (1938, 1941, 1942a,b), Handelman and Prager (1948) and Sewell (1963) while DT was advanced by

Hencky (1925), Nadai (1944), Ilyushin (1946), Shanley (1946), Stowell (1948) and Bijlaard (1949). The two

theories may yield somewhat different buckling load values with DT predicting smaller buckling loads than

those obtained by IT. It is interesting to note that despite the physical shortcoming of DT, the buckling

loads predicted have been found to be in better agreement with test results than that furnished by the more

physically realistic IT (Pride and Heimerl, 1949; Hutchinson, 1974; El-Ghazaly and Sherbourne, 1986;

Durban, 1998). This unexpected buckling behaviour could be due to geometrical and other irregularities
not considered in the theoretical treatment (Chakrabarty, 2002).

The rectangular plate considered herein has two opposite edges simply supported and parallel to the

direction of the applied uniaxial loads while the other two plate edges can take any combination of free,

simply supported or clamped conditions. The uniaxial loads act at the ends of the plate as well as at an

intermediate location in the plate domain. The aim of this paper is to derive analytical plastic buckling

solutions for such loaded plates. These analytical solutions elucidate the intrinsic, fundamental and

unexpected features of the solutions. Moreover the exact buckling solutions serve as useful benchmark

values for researchers developing numerical methods for plastic buckling analysis of plates and shells. First,
however, a brief review of the recent literature (from 1995 onwards) in this field is given.
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Durban and Zuckerman (1999) carried out a detailed parametric study on the elasto-plastic buckling of

rectangular plates under biaxial compression. Apart from confirming that DT furnishes lower buckling

stresses than those computed using IT, they reported the existence of an optimal loading part for DT

model. Betten and Shin (2000) investigated the influences of aspect ratios, load ratios and hardening factors
on the buckling stresses of rectangular plates subjected to biaxial loads. Moen et al. (1998) studied the effect

of plastic anisotropy on the elasto-plastic buckling behaviour of anisotropic aluminum plate elements. Soh

et al. (2000) studied the plastic buckling of a simply supported, rectangular, composite plate subjected to

edge compression. The fibre composite plates considered include carbon epoxy, glass epoxy and boron

aluminum plates. Their theoretical results obtained are deemed comparable to experimental test results.

Chakrabarty (2002) demonstrated the influence of plastic anisotropy on the buckling stress for the plastic

buckling of rectangular plates under unidirectional compression. The buckling stress is shown to be sig-

nificantly lowered by the presence of plastic anisotropy when compared to the corresponding isotropic
material.

The subject on plastic buckling of thick plates was relatively less studied by researchers. One of the early

papers on plastic buckling of thick plates is by Shrivastava (1979, 1995). He derived closed form expressions

for the buckling loads of (a) infinitely long simply supported plates, (b) simply supported square plates and

(c) infinitely long plates that are simply supported on three sides and free on one unloaded edge. Wang et al.

(2001) derived analytically the elastic/plastic stability criteria for (a) uniaxially and equibiaxially loaded

rectangular plates with two opposite edges simply supported while the other two edges may take on any

combination of free, simply supported or clamped boundary condition and (b) uniformly inplane loaded
circular plates with either simply supported edge or clamped edge. Wang (2004) treated the plastic buckling

of uniformly inplane loaded, simply supported, polygonal, thick plates and gave an analytical relationship

between the plastic buckling load and its corresponding elastic thin plate buckling load.
2. Mathematical modeling

2.1. Problem definition

Consider an isotropic, rectangular thin plate as shown in Fig. 1a. The plate has length a, width b, and
thickness h and is simply supported along the edges y ¼ 0 and y ¼ b. The other two edges of the plate may

take any combination of free (F), simply supported (S) and clamped (C) conditions. For convenience, a
four-letter symbol is used to denote the support conditions of the plate. For example, an FSCS plate has a

free left edge, a simply supported bottom edge, a clamped right edge and a simply supported top edge.

The plate is subjected to an end load N1 ¼ r1h (per unit length) at the edge x ¼ 0 and an intermedi-

ate load N2 ¼ r2h (per unit length) at the location x ¼ ga. Thus the end reaction force at the right edge

x ¼ a is N1 þ N2 ¼ ðr1 þ r2Þh as shown in Fig. 1. A positive value of r implies a compressive load while a

negative value implies a tensile uniaxial load. The material of the plate is assumed to obey the Ramberg–

Osgood constitutive law. The problem at hand is to determine the plastic buckling load for such a loaded

plate.
2.2. Method of solution

The plate is first divided into two sub-plates. The first sub-plate is to the left of the vertical line defined by

x ¼ ga (see Fig. 1b) and the second sub-plate is to the right of this line (see Fig. 1c). Adopting the x–y
coordinate systems as shown in Fig. 1b and c, the governing plastic buckling equation for each sub-plate
may be canonically written as (see Chakrabarty, 2000)
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in which w is the transverse displacement at the midplane of the plate, r the inplane stress of the sub-plate,

and the parameters a, b, c, l are defined as follows:

• Based on incremental theory of plasticity (IT):
a

c ¼

a

c ¼
¼ 1

q
1

�
þ 3

T
E

�
; b ¼ 1

q
2

�
� 2ð1� 2mÞ T

E

�
þ 1

1þ m
; ð2a;bÞ
4

q
; q ¼ ð5� 4mÞ � ð1� 2mÞ2 T

E
: ð2c;dÞ
• Based on deformation theory of plasticity (DT):
¼ 1

q
1

�
þ 3

T
S

�
; b ¼ 1

q
2

�
� 2ð1� 2mÞ T

E

�
þ 1

1þ m
; ð3a;bÞ
4

q
; q ¼ 3

E
S
þ ð1� 2mÞ 2

�
� ð1� 2mÞ T

E

�
; ð3c;dÞ
where m is the Poisson ratio, and the ratios of the elastic modulus E to the tangential modulus T and the

secant modulus S at the onset of buckling are expressed as
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where r0 is a nominal yield stress, c the hardening index that describes the shape of the stress–strain

relationship with c ¼ 1 for elastic-perfectly plastic response, and k the horizontal distance between the

knee of c ¼ 1 and the intersection of the c curve with the r=r0 ¼ 1 line as shown in Fig. 2.
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where i ¼ 1; 2 respectively denotes the sub-plates 1 and 2; a1 ¼ ga and a2 ¼ ð1� gÞa. In view of Eq. (5a)–

(5c), Eq. (1) may be rewritten as
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Based on the Levy approach (Timoshenko and Woinowsky-Krieger, 1959), the solution to the partial

differential equation may take the form of
�wið�xi; �yiÞ ¼ Aimð�xiÞ sinmp�yi; i ¼ 1; 2; ð7Þ
where m ð¼ 1; 2; . . . ;1Þ is the number of the half waves of the buckling mode in the y-direction. In view of
Eq. (7), the partial differential equation (6) may be reduced into an ordinary differential equation given by



Fig. 2. Ramberg–Osgood stress–strain relation.
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Three parameters D1, D2, and D3 are defined as follows:
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Depending on the values of D1, D2 and D3, there are eight possible solutions for the fourth-order differential

equation (8). These solutions, designated as Solutions A–H, are given in Table 1.
1

of solutions depending on values of D1, D2, D3

D2 D3 Solution

>0 >0 A

<0 B

¼ 0 >0 C

<0 D

<0 Any value E

¼ D2
3

4
>0 F

<0 G

Any value Any value H
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Solution B: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

Aim ¼ Ci1 cosh/i�xi þ Ci2 sinh/i�xi þ Ci3 cosh ni�xi þ Ci4 sinh ni�xi in which /i ¼

�D3 þ
ffiffiffiffiffi
D1

p

2
;

ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D3 �

ffiffiffiffiffi
D1

p

2

s
: ð13Þ
Solution C:
Aim ¼ Ci1 cos/i�xi þ Ci2 sin/i�xi þ Ci3�xi þ Ci4 in which /i ¼
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Solution E:
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Solution F:
Aim ¼ Ci1 cos/i�xi þ Ci2�xi cos/i�xi þ Ci3 sin/i�xi þ Ci4�xi sin/i�xi in which /i ¼
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2

r
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Solution G:
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ffiffiffiffiffiffiffiffiffi
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Solution H:
Aim ¼ Ci1 cosh/i�xi cos ni�xi þ Ci2 cosh/i�xi sin ni�xi þ Ci3 sinh/i�xi cos ni�xi þ Ci4 sinh/i�xi sin ni�xi

in which /i ¼
1
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Note that the solutions of Eq. (8) that are given explicitly in Eqs. (12)–(19) involve real values only, i.e. /i

and ni are real values. We may employ the state-space technique to obtain the solutions for Eq. (8) as

illustrated by Xiang et al. (2003). The solutions of Eq. (8) can also be expressed in a more compact form as

shown by Ore and Durban (1992) if the complex roots of the characteristic equation of Eq. (8) are used in
the solutions. One of the main reasons that prompted the authors to choose the current form of solutions

for Eq. (8) is to reveal the buckling modes of the plates in an explicit form which is readily comprehended.
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The eight real constants C1i, C2i, i ¼ 1; 2; 3; 4 resulting from the solution combination can be evaluated

using the boundary equations at the edges �x1 ¼ 0 and �x2 ¼ 1.

• For simply supported edges:
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and the continuity equations at the separation interface are
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By substituting the appropriate solutions expressed in Eqs. (12)–(19) into Eqs. (20) to (23), one obtains a set

of homogeneous equations which may be expressed in the following matrix form:
½K�fCg ¼ f0g ð24Þ
in which fCg ¼ fC11 C12 C13 C14 C21 C22 C23 C24gT. For a nontrivial buckling solution, the determinant of

½K� must vanish. The characteristic equation furnishes the stability criterion. The valid solution combi-

nations should satisfy the following requirements:

• The buckling load satisfies the limits of validity for the solution combinations which it belongs to.

• The buckling load is the lowest value among possible solutions and it was found that m ¼ 1 gives the

lowest load for all possible m values for the considered cases.

• The stability curves are continuous.
3. Results and discussion

In order to examine the plastic buckling criteria of rectangular plates, we have adopted the following
material properties: E ¼ 10700 ksi, r0 ¼ 61:4 ksi, v ¼ 0:32 and the Ramberg–Osgood parameters c ¼ 20

and k ¼ 0:3485. The influences of material properties including E=r0 and c will also be investigated. The

buckling factors for the end and intermediate loads are expressed as K1 ¼ r1hb2=ðp2DÞ and K2 ¼
r2hb2=ðp2DÞ, respectively where D ¼ Eh3=½12ð1� m2Þ� denotes the flexural rigidity of the plate.

Table 2 presents the plastic buckling stress for a simply supported, square plate under a uniaxial

compressive end load. The results are compared with those obtained by Wang et al. (2001). It is observed

that both results are in close agreement. Note that the results from Wang et al. (2001) are based on the

Mindlin shear deformable plate theory. As expected, the results from Wang et al. (2001) are slightly smaller
than the present results which are based on the classical thin plate theory.
ckling stresses r1 for a simply supported, square plate under uniaxial end load (i.e. no intermediate load)

Buckling stresses r1 (in ksi)

IT DT

Present study Wang et al. (2001) Present study Wang et al. (2001)

71.61 70.84 61.90 60.08

61.15 60.71 58.54 57.40

54.88 54.60 54.39 53.81

49.41 49.11 49.32 48.96



Fig. 3. Typical stability criterion curve for CSCS square plate with h=b ¼ 0:04 by DT. The intermediate load is placed at g ¼ 0:5.
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Fig. 3 presents a typical stability criterion curve for plates subjected to intermediate and end loads. The
negative values of Ki, i ¼ 1; 2 denote tensile inplane loads. The plate will not buckle for any combination of

K1 and K2 values which fall below the stability criterion curve.

The stability criterion curve consists of various regimes. For example, considering the case of a CSCS

square plate with a thickness to width ratio h=b ¼ 0:04 and subjected to an intermediate load located at

g ¼ 0:5, there are five regimes I, II, III, IV and V which are defined by solution combinations B+A, H+A,

A+A, A+H and A+B, respectively (see Fig. 3). The critical points P, Q, R and S that connect the regimes

are defined by the solution combinations G+A, F+A, A+F and A+G, respectively. Point P represents

the loading case in which the inplane load is applied to sub-plate 2 only (i.e. N1 ¼ 0) whereas point S
represents the loading case where only sub-plate 1 is loaded (i.e. N1 þ N2 ¼ 0). However, for different

material properties, aspect ratios, intermediate load positions, and boundary conditions the solution

combinations may change somewhat.
3.1. Buckling factors with various aspect ratios a=b

Figs. 4–6 show the stability criterion curves of SSSS, CSCS and FSFS rectangular plates with aspect

ratios a=b ¼ 1:0, 2.0 and 3.0, the intermediate loading position g ¼ 0:5, thickness to width ratio h=b ¼ 0:04
and various end load to intermediate load ratios. Figs. 4a, 5a and 6a show the buckling results using IT
while Figs. 4b, 5b and 6b present results using DT. The two plasticity theories furnish somewhat similar

results except for the case of CSCS square plates.

Referring to Figs. 4 and 5, we can see that for SSSS and CSCS plates, the buckling factors decrease with

the increasing aspect ratios a=b. However, for FSFS plates, the buckling factors with a=b ¼ 1:0 could be

smaller than that of a=b ¼ 2:0 and a=b ¼ 3:0 as shown in Fig. 6. For SSSS and CSCS plates, the differences

between the buckling factors for a=b ¼ 2:0 and a=b ¼ 3:0 are however much smaller than the differences

between those for a=b ¼ 1:0 and a=b ¼ 2:0.
For negative values of the intermediate load factor K2 (i.e. K2 is tensile in nature), the end buckling

factor K1 takes on almost a constant value. This is because sub-plate 2 does not buckle as it is under a very



(a)

(b)

Fig. 4. Stability criteria for SSSS rectangular plates with h=b ¼ 0:04 and different aspect ratios a=b ¼ 1; 2; 3 by (a) IT and (b) DT.

The intermediate load is placed at g ¼ 0:5.
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low compressive stress state or in a tensile stress state. So the buckling deformation of the plate mainly

occurs in sub-plate 1. In order to reinforce this point, consider a rectangular plate with two opposite edges
simply supported, subject to an end load and an intermediate load located at g ¼ 0:5, as shown in Fig. 7a.

Suppose we let sub-plate 2 be subjected to a large tensile stress state, say K2 ¼ �50. Depending on different

boundary conditions of the other two edges, the buckling factors K1 are given in Table 3. We now compare

the buckling stresses of rectangular plates whose aspect ratio a=b ¼ 0:5 and having the same boundary

conditions as sub-plate 1 along three edges, as shown in Fig. 7b, but the X edge may be clamped, simply-

supported or free edge. The corresponding buckling factors are given in Table 3 for comparison. Based on

the results presented in Table 3 for SSSS, CSCS and FSFS plates, we can conclude that when sub-plate 2 is

under a large tensile stress state, the interface edge may be regarded as approaching the condition of a
clamped edge, except for the FSFS plate with a=b ¼ 2:0, where the interface edge imposes a constraint to

the plate similar to the one from a simply-supported edge.



(a)

(b)

Fig. 5. Stability criteria for CSCS rectangular plates with h=b ¼ 0:04 and different aspect ratios a=b ¼ 1; 2; 3 by (a) IT and (b) DT.

The intermediate load is placed at g ¼ 0:5.

C.M. Wang et al. / International Journal of Solids and Structures 41 (2004) 4279–4297 4289
3.2. Buckling factors with various loading positions g

Based on IT and DT, Fig. 8a and b shows the variations of the buckling factors K2 of SSSS rectangular

plates with respect to loading positions g when K1 ¼ 0; 2, a=b ¼ 1; 2, and thickness to width ratio h=b ¼ 0:04
respectively. It can be seen that the buckling factor K2 increases with the increasing value of g, albeit
gradually for g < 0:7 and more steeply for gP 0:7. It can be seen that the two theories of plasticity furnish

significantly different buckling values when g P 0:7, especially for results based on IT. Generally, buckling

factors associated with IT are higher than their DT counterparts. It is worth noting that the buckling factors

K2 for K1 ¼ 0 differ from their counterparts associated with K1 ¼ 2 by an approximate factor of 2.



(a)

(b)

Fig. 6. Stability criteria for FSFS rectangular plates with h=b ¼ 0:04 and different aspect ratios a=b ¼ 1; 2; 3 by (a) IT and (b) DT.

The intermediate load is placed at g ¼ 0:5.
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3.3. Buckling factors with various boundary conditions

The influences of boundary conditions (such as SSSS, CSCS, FSFS, CSSS, FSSS and CSFS) on the

buckling factors are highlighted in Fig. 9. In computing these buckling factors, we have used the following

parameters: aspect ratio a=b ¼ 2:0, thickness to width ratio h=b ¼ 0:04 and intermediate load position

g ¼ 0:5. It can be seen from Fig. 9 that the buckling criterion curves merge at some portions even though

the rectangular plates have one of its edge conditions different from the other provided the sub-plate with
this edge is under a high tensile stress state. For example, a CSFS plate with a high tensile stress state in sub-

plate 2 will behave in a similar manner to a CSCS plate with a high tensile stress state or a low compressive



Fig. 7. Rectangular plate YSZS and corresponding sub-plate YSXS under uniaxial load.

Table 3

Comparison of buckling factors of full plates with uniaxial intermediate and end loads and their corresponding end loaded sub-plates

with different interfacial edge conditions

IT DT IT DT IT DT

Buckling factor K1 for SSSS with

K2 ¼ �50

a=b ¼ 1:0 a=b ¼ 2:0 a=b ¼ 3:0

4.470 4.002 3.799 3.712 3.738 3.674

Buckling factors for SSXS sub-plate a=b ¼ 0:5 a=b ¼ 1:0 a=b ¼ 1:5

X edge is clamped 4.543 4.015 3.806 3.717 3.742 3.679

X edge is simply-supported 3.893 3.797 3.678 3.605 3.631 3.609

X edge is free 1.990 1.990 2.311 2.311 2.253 2.253

Buckling factor K1 for CSCS with

K2 ¼ �50

a=b ¼ 1:0 a=b ¼ 2:0 a=b ¼ 3:0

6.214 4.198 4.108 3.878 3.917 3.802

Buckling factors for CSXS sub-plate a=b ¼ 0:5 a=b ¼ 1:0 a=b ¼ 1:5

X edge is clamped 6.367 4.205 4.123 3.884 3.924 3.806

X edge is simply-supported 4.543 4.015 3.806 3.717 3.742 3.679

X edge is free 2.568 2.568 2.333 2.333 2.270 2.270

Buckling factor K1 for FSFS with

K2 ¼ �50

a=b ¼ 1:0 a=b ¼ 2:0 a=b ¼ 3:0

2.451 2.451 2.289 2.289 2.266 2.266

Buckling factors for FSXS sub-plate a=b ¼ 0:5 a=b ¼ 1:0 a=b ¼ 1:5

X edge is clamped 2.568 2.568 2.333 2.333 2.270 2.270

X edge is simply-supported 1.990 1.990 2.311 2.311 2.253 2.253

X edge is free 1.539 1.539 1.990 1.990 2.210 2.210
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(a)

(b)

Fig. 8. Variation of buckling factors K2 with respect to g for rectangular plates with K ¼ 0 and 2 by (a) IT and (b) DT.
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stress state in sub-plate 2 because the tensile stressed sub-plate does not buckle at all and thus its edge

condition plays no part in the buckling phenomenon.
3.4. Buckling factors with various material properties

The buckling factors of SSSS square plates with various material properties E=r0 ¼ 200, 400, 800 and

c ¼ 2, 3, 20 are given in Figs. 10 and 11 by using IT and DT, respectively. A thickness to width ratio

h=b ¼ 0:04, and loading position g ¼ 0:5 were used in the calculations. It can be seen from Figs. 10 and 11

that the buckling factors decrease with increasing values of hardening index c, i.e. as the plate material

approaches the perfectly elastic–plastic constitutive relation. Furthermore, the shape of the stability cri-



(a)

(b)

Fig. 9. Stability criteria for rectangular plates with h=b ¼ 0:04, aspect ratio a=b ¼ 2, intermediate load position g ¼ 0:5 and different

boundary conditions by (a) IT and (b) DT.
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terion curve for large c values approach a bilinear curve with a horizontal portion when K2 is negative and a

linear curve when K2 is positive. The slope of the linear portion is given by K�
1=K

�
2 where K�

1 is K1 value when

K2 ¼ 0 (i.e. the case when the plate is subjected to only end load) and K�
2 is K2 value when K1 ¼ 0 (i.e. the

case when the plate is subjected to only intermediate load).
3.5. Buckling factors from two theories

The buckling factors of SSSS square plates with various material properties E=r0 ¼ 200, 400, 800 and

under an intermediate load only are given in Fig. 12 by using IT and DT, respectively. From Fig. 12, we

observe that the difference between IT and DT increases with increasing E=r0 values. For the same value of
E=r0, the differences also increases with increasing values of parameter c.



(a)

(b)

(c)

Fig. 10. Stability criteria for SSSS square plates with h=b ¼ 0:04, g ¼ 0:5, for different E
r0
¼ (a) 200, (b) 400, (c) 800 by IT.
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(a)

(b)

(c)

Fig. 11. Stability criteria for SSSS square plates with h=b ¼ 0:04, g ¼ 0:5, for different E
r0
¼ (a) 200, (b) 400, (c) 800 by DT.
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Fig. 12. Buckling load factors K2 for SSSS square plates with K1 ¼ 0.
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4. Conclusions

This paper presents an analytical method for determining the exact plastic buckling factors of rectan-

gular plates subjected to end and intermediate uniaxial loads, and where two opposite edges (parallel to the
loads) of the plates are simply supported. In this method, the rectangular plate is divided into two sub-

plates at the intermediate load location. Each sub-plate buckling problem is then solved using the Levy

approach. There are eight feasible solutions for each sub-plate. The critical buckling load is determined

from one of the 64 possible solution combinations for the two sub-plates. The solution combination de-

pends on the aspect ratio, the intermediate load position, the intermediate to end load ratio, the material

properties and the boundary conditions. The effects of the aforementioned parameters and the adoption of

DT and IT on the buckling factors are also investigated.

The presented exact buckling solutions do not only elucidate the intrinsic and fundamental character-
istics of the buckling solutions but they should be useful to researchers as benchmark values for checking

the convergence, validity and accuracy of numerical methods for plate buckling analysis.
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